Image Data Emulation and Analysis (IDEA) Lab

• Directed by: Prof. Xiaolei Huang, Lehigh CSE

Spotlight

Salient Region Feature based Registration

In this project, we develop a novel method for aligning images under arbitrary poses, based on finding correspondences between image region features. The method uses a small number of automatically extracted scale-invariant salient region features, whose interior intensities can be matched using robust multi-modal similarity measures.

Please move your mouse to the images on the left to find out more about our ongoing projects.
Computational Approaches to Biomedical Image Analysis

- Biomedical imaging and robust image analysis for image-guided diagnosis or therapy, information extraction, modeling
 - Aid doctors in accurate and reproducible diagnosis
 - Help understand the anatomical and physiological relationships in normal and diseased states
 - Help biologists and biophysicists in understanding and modeling complex biological pathways and systems.
 - Create intelligent vision systems that are capable of learning effectively and reasoning about multiple sources of information in order to achieve functions typical of human vision.
Heart Modeling and Wall Motion Analysis

Normal heart

Diseased heart after heart attack
Finding Organ Boundary in 3D Volumetric Medical Images

- Quantitative analysis of organ properties
- Detecting abnormalities
- Building statistical atlas for normal vs. abnormal anatomy.

Segmentation of organs in CT/MRI images and 3D visualization

Lung

Coronary Arteries

Brain
Early Detection of Cervical Cancer

- Pap smear: 15-35% false negative rate
- HPV Test: 20-30% false positive rate
- Administering both is costly
- In developing countries, access to screening and lab facilities is scarce.

60 mil. 5 mil. abnormal 2.5~3 mil.
Computer-assisted Visual Interactive Recognition of Cervical Lesions

• Toward a more cost-effective way for early detection of cervical cancer by computer-assisted recognition of cervical lesions in cervigrams -- photographs of the cervix.

• Specific aims
 – Computer learning, from annotated cervigrams, of the correlation between image features and the severity of lesions.
 – Enable the search of medical records based on image content, e.g.
 • Web browser-based retrieval of similar cervigrams, along with diagnostic comments, from a large NCI/NLM archive
 • Online educational tool to help medical personnel learn how to grade cervical lesions.

NSF project co-PIs: Xiaolei Huang, Daniel Lopresti, Gang Tan, George Nagy (RPI), Joseph Patruno (LVH); in collaboration with researchers at National Cancer Institute and National Library of Medicine.
Preliminary Results

(1) Visualization of different tissue regions in a web-browser. A region of interest can be selected and highlighted.

(2) Retrieval of similar cervigrams from the database based on Acetowhite region Properties (e.g. similar color, area, location)
Quantitative Computer Analysis of Biological Images

• Skeletonization of actin meshwork during cell division

NIH project co-PIs: Dimitrios Vavylonis (Physics), Xiaolei Huang (CSE),; In collaboration with Jian-Qiu Wu (Ohio State U.) and Tom Pollard (Yale)

Filament length (left) and intensity (right) statistics, based on extraction result above
IDEA Lab (Cont’d)

– Computer Vision

Alignment of Shapes regardless of noise

Detecting and matching objects that undergo Affine or articulated deformation

– Computer Graphics

User editing transfer: interactions on one cake is transferred to all others

Model-based Face Matching and 3D Facial Expression Retargeting